
1

A Fast Poisson Solver for 3D Space Charge Calculations in a
CPU+GPU Heterogeneous Routine

Dawei Zheng, Ursula van Rienen, Member, IEEE

University of Rostock, Faculty of Computer Science and Electrical Engineering, D-18059 Rostock, Germany

Space charge calculations play a key role in beam dynamics studies for particle accelerators and various other physical and
technical fields. The major work is to solve Poisson’s equation for numerous time steps. Therefore, it is important to solve Poisson’s
equation in a short time. In this paper, we present a CPU+GPU based heterogeneous parallel computation routine with the CUDA
platform in a normal PC. The new framework benefits from a novel efficient discrete cosine transform study using the classical
Hockney’s convolution routine rather than the former one with discrete Fourier transform. A model problem has been studied,
which showed an efficiency improvement with the new heterogeneous routine.

Index Terms—Poisson’s equation, FFT, beam dynamics, space charge.

I. INTRODUCTION

PARTICLE accelerators offer a great variety of research
applications nowadays in fields like particle physics,

material sciences, chemistry and biology. In these applica-
tions, the beam of bunches, a large amount of particles,
influences the performance of the accelerator facility. In the
beam dynamics study regarding the space charge effects of
particles, it is necessary to solve Poisson’s equation with
proper boundary conditions, usually free boundary conditions.
A common method to solve Poisson’s equation:

−∆ϕ =
ρ

ε0
, (1)

where ρ is the charge density, ϕ is the electrical potential and
ε0 is the permittivity of vacuum, is to use the convolution
of the density of charged particles and Green’s function in
free space [1]. After the zero padding of the charge density
and the extensions of Green’s function, we process a double-
sized fast Fourier transform (FFT) in all dimensions. The
electrical potential is easily achieved by multiplying the two
and transferring back with an inverse FFT. This method is
known as Green’s function (GF) method (Hockney’s routine)
[1] [2] [3].

For huge beam dynamics simulation projects, the Poisson
solvers are usually implemented in a parallel routine by pure
MPI or OpenMP+MPI hybrid programming. The programs are
implemented in supercomputer, cluster or MIC (Many Inte-
grated Core) architecture. Alternatively the NVIDIA has been
releasing its GPUs with computational acceleration since 2006.
The CUDA (Compute Unified Device Architecture) platform
provides the possibility to have computations made by a large
number of GPU cores. For pure GPU cluster and MPI+GPU
routines, some results have already been presented, e.g. [4].
For other simulation projects using a single workstation or PC,
the GPU+CPU acceleration fits the aim to speed up calculation
dramatically. However, most codes focus originally on the
efficient implementation with supercomputers or clusters, even
though these codes would be applicable for PCs as well.

In this paper, we introduce a heterogeneous parallel routine
by OpenMP+CUDA framework. In detail, we emphasize the
PC implementation, i.e. both CPU and GPU are sufficiently ex-
ploited. To fulfill this purpose, we present the cutting reduced
integrated Green’s function (CRIGF) method, which speeds
up the pure CPU time around 15% - 25%. Furthermore, we
use a 3-D discrete cosine transform to replace the commonly
used 3-D discrete Fourier transform for GF values using CPU
computation. Simultaneously, the FFT is applied after the
above-mentioned zero-padded charge density is proceeded by
using CUDA CUFFT computation on GPU.

In principle, this CPU threads with GPU acceleration should
perform better than pure CPU or pure GPU computation in
PC-level simulation, that can be seen from our numerical
examples.

II. CRIGF WITH DISCRETE COSINE TRANSFORM ROUTINE

The solution of Poisson’s equation (1) in free space reads
as:

ϕ(r) =
1

4πε0
·
∫∫∫

ρ (r′)
1

‖r− r′‖
dx′dy′dz′, (2)

where the vectors are expressed as r = (x, y, z), r′ =
(x′, y′, z′) in Cartesian coordinate. The 1

‖r−r′‖ is defined as
Green’s function (GF) G(r, r′):

G(r, r′) =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (3)

With the summation of integrals for Green’s function over each
equidistant grid cell, the integrated Green’s function (IGF)
formula is given by

ϕ(rl) ≈
1

4πε0
·
(Nx,Ny,Nz)∑
l =(1,1,1)

ρ(r′l′)G̃IGF(rl, r
′
l′), (4)

where l = (i, j, k), l′ = (i′, j′, k′) and G̃IGF(rl, r
′
l′) (or sim-

plified G̃IGF(xi, yj , zk)) is calculated for the Green’s function
as :

G̃IGF(rl) =

∫∫∫ rl−h/2

r′l′−h/2
G(rl, r

′
l′)dV

′, (5)

2

where the h = (hx, hy, hz) is the discrete stepsizes, dV ′ =
dx′dy′dz′. This integral’s expression can be found in [3].

The CRIGF (Cutting Reduced Integrated Green’s Function)
integral is defined as follows:

G̃CRIGF(r(i,j,k)) =

 G̃IGF(r(i,j,k)) 1 ≤ w ≤ Rw;
hxhyhzG(r(i,j,k)) Rw ≤ w ≤ Cw;
0 otherwise;

for w in {x, y, z}. Cw and Rw are offered to switch between
different numerical integrals. More details about how to choose
them are discussed in our former work [5].

Normally, after the tilde Green’s function calculations, we
previously extend the GF values and take the 3-D Fourier
transform. However, in this case we provide a discrete cosine
transform-I (DCT-I) of tilde GF to replace the extended 3-D
Fourier transform, which has been shown in [6].

Theorem II.1. Suppose a vector g = {g0, g1, . . . gn},
the real even symmetric extension of g is g̃, i.e. g̃ =
{g0, g1, . . . gn, gn−1, gn−2, . . . g1}2n. If the vector ỹ = 1

2F2ng̃
and y = DCTn(g), where DCT is the first kind of discrete
cosine transform (DCT-I), then ỹ is the real even symmetric
extension of y.

III. CPU+GPU HETEROGENEOUS PARALLEL
IMPLEMENTATION

ρ ϕρ̂ex ϕ̂ex

deformed
3-D DFT

deformed
3-D IDFT

∗

ΛG̃

frequency space

3-D DCT

(Cx, Cy, Cz)

(Rx, Ry, Rz)

ρ ϕ

GPU:

CPU:

switching

spectrum

CPU and GPU seperation

Fig. 1. The schematic plot of the heterogeneous Poisson solver routine with
CPU and GPU separation.

The algorithm improvement indicates a heterogeneous im-
plementation of its routine. Firstly, the calculation of Green’s
function and related 3-D DCT is separated from the calculation
of the deformed DFT of the charge density. Secondly, the
size of 3-D DCT of the Green’s function is smaller than the
size of 3-D deformed FFT of the charge density. Thirdly, the
calculation time of FFT on a GPU is much lower than that
on a CPU with the same size. However, a GPU does not
have a strong capability to calculate complicated formulas like
IGF values. The above facts give an insight into performing
a CPU+GPU heterogeneous routine of our Poisson solver.
We split the calculations into two portions by the CPUs’
threads as shown in Figure 1: the CPU computing portion
and the GPU computing portion. For the CPU computing
portion, we compute the tilde Green’s function values G and
the following 3-D DCT. Simultaneously, we copy the charge
density data ρ to the GPU and start the deformed 3-D DFT.

After a synchronization between CPU threads, we copy the
spectrum Λ, which is the transformed Green’s function values,
to the GPU to multiply with ρ̂ex to achieve ϕ̂ex. The following
deformed 3-D IDFT is performed on ϕ̂ex to gain the electrical
potential ϕ. Finally, the calculation results are copied back to
RAM for further usage.

IV. EXAMPLE AND CONCLUSION

Firstly, the algorithm is applied to a charged ellipsoid with
a longitudinal-transverse ratio of 30. This example is used for
the model of a bunch of electrons with charge, Q = −1nC.
The relative errors, which we used are defined as follows:

ηϕ(i, j, k) :=
|ϕi,j,k − ϕtruei,j,k |
maxi,j,k |ϕtruei,j,k |

, and η̂ϕ : max
i,j,k

(ηϕ(i, j, k)).

Here, the notations are, ηϕ(i, j, k), η̂ϕ, ϕi,j,k and ϕtruei,j,k as
the relative error of the potential at index (i, j, k), the global
relative error of the potential, the computed potential at index
(i, j, k) and the true potential for the same index, respectively.
The comparison is shown in Table I. For the CPU routine, the

TABLE I
ELAPSED TIME COMPARISON OF PURE CPU ROUTINE AND

HETEROGENEOUS ROUTINE WITH INCREASING GRIDS RESOLUTION.

N+1 CPU η̂ϕ CPU+GPU η̂ϕ
32 0.035 s 0.0239 0.0194 s 0.0239
64 0.450 s 0.00317 0.104 s 0.00316

128 4.223 s 0.00125 0.760 s 0.00126

GF values are calculated by the IGF method and we use a FFT
of the extended G̃ values. For the CPU+GPU heterogeneous
routine, the GF values are calculated by the RIGF method and
we use the 3-D DCT of the GF values.

In this paper, we presented a new CPU+GPU heterogeneous
routine for the Poisson solver in the calculation of the space
charge effect in particle accelerators. The first simulation result
showed that, the new routine has a higher efficiency than the
former CPU routine. In future, the programming routine will
be optimized to fully exploit the CPU+GPU heterogeneous
efficiency.

ACKNOWLEDGEMENT

Dawei Zheng would like to thank the China Scholarship
Council for the support of his study in this work.

REFERENCES

[1] R. W. Hockney and J. W. Eastwood, Computer simulation using particles.
CRC Press, 2010.

[2] J. Qiang, S. Lidia, R. Ryne, and C. Limborg-Deprey, “Three-dimensional
quasistatic model for high brightness beam dynamics simulation,” Phys.
Rev. ST Accel. Beams, vol. 9, no. 4, Apr. 2006. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204

[3] ——, “Erratum: Three-dimensional quasistatic model for high brightness
beam dynamics simulation [phys. rev. ST accel. beams 9, 044204
(2006)],” Phys. Rev. ST Accel. Beams, vol. 10, no. 12, Dec. 2007. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevSTAB.10.129901

[4] Q. Lu and J. Amundson, “Synergia CUDA: GPU-accelerated accelerator
modeling package,” in Journal of Physics: Conference Series, vol. 513,
no. 5. IOP Publishing, 2014, p. 052021.

[5] D. Zheng, G. Pöplau, and U. van Rienen, “On several Green’s function
methods for fast Poisson solver in free space,” SCEE, 2014.

[6] ——, “Efficiency optimization of fast Poisson solver in beam dynamics
simulation,” will be submitted to Computer Physics Communications.

